COMPLEX

Section: Linux Programmer's Manual (7)
Updated: 2009-07-25
Index Return to Main Contents
 

NAME

complex - basics of complex mathematics  

SYNOPSIS

#include <complex.h>  

DESCRIPTION

Complex numbers are numbers of the form z = a+b*i, where a and b are real numbers and i = sqrt(-1), so that i*i = -1.
There are other ways to represent that number. The pair (a,b) of real numbers may be viewed as a point in the plane, given by X- and Y-coordinates. This same point may also be described by giving the pair of real numbers (r,phi), where r is the distance to the origin O, and phi the angle between the X-axis and the line Oz. Now z = r*exp(i*phi) = r*(cos(phi)+i*sin(phi)).

The basic operations are defined on z = a+b*i and w = c+d*i as:

addition: z+w = (a+c) + (b+d)*i
multiplication: z*w = (a*c - b*d) + (a*d + b*c)*i
division: z/w = ((a*c + b*d)/(c*c + d*d)) + ((b*c - a*d)/(c*c + d*d))*i

Nearly all math function have a complex counterpart but there are some complex-only functions.  

EXAMPLE

Your C-compiler can work with complex numbers if it supports the C99 standard. Link with -lm. The imaginary unit is represented by I.

/* check that exp(i * pi) == -1 */
#include <math.h>        /* for atan */
#include <stdio.h>
#include <complex.h>

int
main(void)
{
    double pi = 4 * atan(1.0);
    double complex z = cexp(I * pi);
    printf("%f + %f * i\n", creal(z), cimag(z));
}
 

SEE ALSO

cabs(3), carg(3), cexp(3), cimag(3), creal(3)  

COLOPHON

This page is part of release 3.27 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.


 

Index

NAME
SYNOPSIS
DESCRIPTION
EXAMPLE
SEE ALSO
COLOPHON

This document was created by man2html, using the manual pages.
Time: 19:49:28 GMT, April 27, 2011